6/H-28 (vii) (Syllabus-2015)

2018

(April)

STATISTICS

(Honours)

(Statistical Inference)

[STEH-61(TH)]

Marks : 56

Time : 3 hours

The figures in the margin indicate full marks for the questions

Answer **five** questions, taking **one** from each Unit

Unit—I

1. (a) Define MVUE. Show that if T_1 is an MVUE of $\gamma(\theta)$ and T_2 is any other unbiased estimator of $\gamma(\theta)$ with efficiency e < 1, then no unbiased linear combination of T_1 and T_2 can be an MVUE of $\gamma(\theta)$.

2+4=6

∕8D**/1865**

(Turn Over)

- (b) Define consistency of an estimator. Show that the proportion of successes in a series of n trials with constant probability of success p for each trial, is a consistent estimator of population proportion of success P. 2+4
- **2.** (a) State and prove Cramer-Rao inequality. $1+5^{\circ}$
 - (b) For a random sample x_i (i = 1, 2, ..., n) from an exponential distribution with p.d.f.

$$f(x, \theta) = \frac{1}{\theta} \exp\left[-\frac{x}{\theta}\right], x > 0, \theta > 0$$

obtain an unbiased and sufficient estimator for θ .

UNIT-II

- 3. (a) Define maximum likelihood estimator and state its properties. Find the maximum likelihood estimator of the parameter μ of $N(\mu, \sigma^2)$, when σ^2 is known. $1+2+3^{\sharp}$
 - (b) Obtain the maximum likelihood estimator for the distribution having the probability mass function

$$f(x, \theta) = \theta^{x}(1-\theta)^{x-1}, x = 0, 1, 2, \cdots$$

 $0 \le \theta \le 1$

- **4.** (a) Explain the general method of constructing confidence interval for parameter of a population.
 - (b) Construct the confidence interval for mean parameter μ of normal population with known σ^2 and proportion parameter p of binomial population with known n.

UNIT---III

- 5. (a) Explain what is meant by a statistical hypothesis. Also discuss the two types of error that arise in testing of hypothesis. 2+3=5
 - (b) If $x \ge 1$ is the critical region for testing $\theta = 2$ against the alternative $\theta = 1$, on the basis of a single observation from the population

$$f(x, \theta) = \frac{1}{\theta}e^{-x/\theta}; \ 0 < x < \infty$$

evaluate the type-I, type-II errors and the power function of the test. 2+2+2=6

- 6. (a) Explain the terms 'most powerful test', 'uniformly most powerful test' and 'unbiased test'. 2+2+2=6
 - (b) Let $X_1, X_2, X_3, ..., X_n$ be i.i.d. $N(\mu, \sigma^2)$ random variables, where σ^2 is known. Find the MP test to test the null hypothesis $H_0: \mu = \mu_0$ against the alternative $H_1: \mu = \mu_1$.

(Turn Over)

5

5

6

8D**/1865**

(Continued⁸

~~

(4)

Unit—IV

- 7. (a) State Neyman-Pearson lemma. What are its differences from likelihood ratio test? 2+3=5
 - (b) Construct the likelihood ratio test for testing $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$ based on a sample of size *n* from $N(\mu, \sigma^2), \sigma^2 > 0.$ 6
- 8. (a) Define OC function and ASN function of SPRT. 2+2=4
 - (b) Give the SPRT for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1 (> \theta_0)$ in the sampling from a normal density

$$f(x, \theta) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\theta}{\sigma})^2}; -\infty < x < \infty$$

where σ is known. Also obtain its
OC function. $3+4=7$

UNIT-V

9. (a) Differentiate between large sample and small sample tests and discuss their consequences in testing of hypothesis problems. How does the central limit theorem help in deriving large sample 2+2+2=6 (b) Obtain the large sample test for single binomial proportion.

5

6

5

- 10. (a) Describe large sample test of significance for single proportion. Also write down the confidence interval for the proportion.
 - (b) Obtain the test procedure (for large samples) for the test of significance for difference of means.

* * *

6/H-28 (vii) (Syllabus-2015)

(Continued) 8D-300/1865

(5)